Analyzing a social network using Big Data Spatial and Graph Property Graph

Oskar van Rest
Principal Member of Technical Staff

Gabriela Montiel-Moreno
Principal Member of Technical Staff
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Program Agenda

1. Introduction
2. Property Graph Data Model & BDSG Architecture
3. Oracle Big Data Spatial and Graph Core Features
4. Graph Analytics using PGX Graph Analytics Engine
5. HoL: Analyzing a social network using Property Graphs
Graph Database Definition

Graph database is a database that uses graph structures with nodes, edges, and properties to represent and store data.¹

Why do we care?

Graphs are intuitive and flexible
- Easy to navigate, easy to form a path, natural to visualize

Enables views and queries that would be expensive on other databases

Graphs are everywhere
- Road networks, power grids, biological networks
- Social Networks
- Knowledge graphs (RDF, OWL)
Graph Use Case Scenarios

• Fraud detection
 – Find parties in insurance data who are on both sides of multiple claims, who live near each other

• Internet of Things
 – Manage graph of interconnected devices and predict the effect of an disruptions across network

• Cyber Security
 – Find entry points and affected machines

• Border Control
 – Analyze flight histories of a suspicious passenger. Indentify his co-travelers, co-traveler’s co-travelers, ...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
Program Agenda

1. Introduction
2. Property Graph Data Model & BDSG Architecture
3. Oracle Big Data Spatial and Graph Core Features
4. Graph Analytics using PGX Graph Analytics Engine
5. HoL: Analyzing a social network using Property Graphs
Property Graph Data Model

- **A set of vertices**
 - each vertex has a unique identifier
 - each vertex has a set of outgoing/incoming edges
 - each vertex has a collection of key-value properties

- **A set of edges**
 - each edge has a unique identifier
 - each edge has a head/tail vertex
 - each edge has a label that denotes the type of relationship between two vertices
 - each edge has a collection of key-value properties

- Blueprints Java APIs
- Implementations
 - Neo4j, Titan, InfiniteGraph, Dex, Sail, MongoDB ...

(example from https://github.com/tinkerpop/gremlin/wiki/Defining-a-Property-Graph)
Graph Analytics

Parallel In-Memory Graph Analytics (PGX)

Graph Data Access Layer (DAL)

Apache Blueprints & Lucene/SolrCloud

Java APIs

Scalable and Persistent Storage Management

Apache HBase

Oracle NoSQL Database

Property Graph formats

GraphML
GML
Graph-SON
Flat Files
CSV
Relational

Python, Perl, PHP, Ruby, Javascript, ...

Java APIs

REST/Web Service
Program Agenda

1. Introduction
2. Property Graph Data Model & BDSG Architecture
3. Oracle Big Data Spatial and Graph Core Features
4. Graph Analytics using PGX Graph Analytics Engine
5. HoL: Analyzing a social network using Property Graphs
Data Access (APIs)

• Blueprints 2.3.0, Gremlin 2.3.0, Rexster 2.3.0
• Groovy shell for accessing property graph data
• REST APIs (through Rexster integration)
• PGQL (Property Graph Query Language)
Text Search through Apache Lucene/Solr

• Use text indexing to access vertices or edges
 – Eg. find person with given name as starting point for reachability analysis
 – oraclePropertyGraph.createKeyIndex("name", Vertex.class);
 – oraclePropertyGraph.getVertices("name", "*Obama*", true);

• Based on Apache Solr/Solr Cloud
 – Highly scaleable through sharding and replication

• Uses Apache Lucene under the covers
 – open source text search engine library
 – inverted index, ranked searching, fuzzy matching ...

• Supports manual and auto indexing of Graph elements
Support for Cytoscape Open Source Visualization
Integration with Tom Sawyer Perspectives via property graph REST APIs
Python Interface

• Installation
 – property_graph/pyopg/README

• Usage
 – cd ${ORACLE_HOME}/md/property_graph/pyopg/.pyopg.sh
 ipython notebook

```python
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(16,12));
community_frame['size'].plot(kind="bar", title="Communities and Sizes")
ax.set_xticklabels(community_frame.index);
```
Program Agenda

1. Introduction
2. Property Graph Data Model & BDSG Architecture
3. Oracle Big Data Spatial and Graph Core Features
4. Graph Analytics using PGX Graph Analytics Engine
5. HoL: Analyzing a social network using Property Graphs
Graph Analytics workloads

Computational Graph Analytics
- Connected Components
- Modularity
- Conductance
- Shortest Path
- Pagerank
- Spanning Tree
- Clustering
- Coefficient
- Centrality
- Coloring

Compute certain values on nodes and edges

While (repeatedly) traversing or iterating on the graph

In certain procedural ways

Graph Pattern Matching

Given a description of a pattern

Find every sub-graph that matches it

Typical graph analysis systems do not support both
In-Memory Analyst (PGX)

• PGX is the in-memory, parallel graph analytics engine of Oracle Big Data Spatial and Graph

• Approaches
 – Reads snapshot of graph data from database (or file)
 – Support delta-update from transactional changes in database
 – Processes analytic requests efficiently in-memory
 • Supports remote clients via REST

Oracle Big Data Spatial and Graph
Computational Analytics: Built-in Package

Rich set of built-in parallel graph algorithms

- Detecting Components and Communities
 - Tarjan’s, Kosaraju’s, Weakly Connected Components, Label Propagation (w/ variants), Soman and Narang’s Spacification

- Ranking and Walking
 - Pagerank, Personalized Pagerank, Betweenness Centrality (w/ variants), Closeness Centrality, Degree Centrality, Eigenvector Centrality, HITS, Random walking and sampling (w/ variants)

- Path-Finding
 - Hop-Distance (BFS) Dijkstra’s, Bi-directional Dijkstra’s Bellman-Ford’s

- Evaluating Community Structures
 - Conductance, Modularity, Clustering Coefficient (Triangle Counting) Adamic-Adar

- Link Prediction
 - SALSA (Twitter’s Who-to-follow)

- Other Classics
 - Vertex Cover
 - Minimum Spanning-Tree (Prim’s)

... and parallel graph mutation operations

- The original graph
 - Left Set: “a,b,e”
 - Create Bipartite Graph
 - Filter-Expression
 - Sort-By-Degree (Renumbering)
 - Filtered Subgraph
 - Create Undirected Graph
 - Simplify Graph

The original graph
Pattern matching using PGQL

• SQL-like syntax but with graph pattern description and property access
 – Interactive (real-time) analysis
 – Supporting aggregates, comparison, such as max, min, order by, group by

• Finding a given pattern in graph
 – Fraud detection
 – Anomaly detection
 – Subgraph extraction
 – ...

• Recursive path querying

• Proposed for standardization by Oracle
 – Specification available on-line
 – Open-sourced front-end (i.e. parser)

https://github.com/oracle/pgql-lang
PGQL Example query

• Find all instances of a given pattern/template in data graph
• Fast, scaleable query mechanism

```sql
SELECT v3.name, v3.age
FROM 'myGraph'
WHERE
  (v1:Person WITH name = 'Amber') -[:friendOf]-> (v2:Person) -[:knows]-> (v3:Person)
```

Query: Find all people who are known to friends of ‘Amber’.

https://github.com/oracle/pgql-lang/
http://pgql-lang.org/
In-Memory Analyst (PGX) in Apache Zeppelin
Create notebooks with paragraphs that run graph queries or graph algorithms

Pharma Use Case

Reachability
Our Green-Mart program will populate it. Then we will run some code to query this property and return the graph nodes with a high value for it.

```sql
// create a new property named 'count'
create property (PropertyType.DEGREE, 'count');

// Vertex Property named 'count' of type Integer belonging to graph 'flight'

Now we are ready to run our Green-Mart program against the graph:

```sql
// find all the travelling relations
find Travellers using graph, graph.featVertices('type', Traveller, 2, count);
```

Now we use PGQL - Parallel Graph Query Language, the graph pattern matching language PGX provides - to get our results:

```
305
frequency 2.00
```

```
p.id p.first_name p.last_name p.count
23 LUCRIOCA DEBRA 24
6 CAMMME KITTY 23
11 CHANTAY ALEASE 22
13 HERBERTO SIGRID 22
```
Apache Zeppelin Integration

- Apache Zeppelin is a **multi-purpose notebook** for data analysis and visualization similar to iPython/Jupyter
- Lots of language bindings and interpreters **built in** ->
- JVM based
- Very active development community
- Easy extensible
In-Memory Analyst (PGX) in Apache Zeppelin

Web Browser

Zeppelin Server

In-Memory Analyst (PGX) Interpreter

In-Memory Analyst (PGX) Server

HTTPS

HTTPS
Program Agenda

1. Introduction
2. Property Graph Data Model & BDSG Architecture
3. Oracle Big Data Spatial and Graph Core Features
4. Graph Analytics using PGX Graph Analytics Engine
5. HoL: Analyzing a social network using Property Graphs