PRACTICAL IOT DEVELOPMENT USING ORACLE BIG DATA AND ORACLE DV ...AND A WIFI KETTLE

Mark Rittman, Oracle ACE Director & Independent Analyst
MJR Analytics ltd (http://www.mjr-analytics.com)

BIWA SUMMIT 2017, SAN FRANCISCO
About Mark Rittman

- Oracle ACE Director, Independent Analyst
- Company founder, Oracle ACE Director, product specialist
- Now working in product management around big data & analytics
- Regular columnist for Oracle Magazine, OTN
- Author of two books on Oracle BI & Engineered Systems
- 15+ Years in Oracle BI, DW, ETL + now Big Data
- Personal blog at medium.com/mark-rittman
- Podcast on iTunes and drilltodetail.com
- Contact me at mark@rittman.co.uk
Wearables & Smart Devices - Our Data Ecosystem

- How many of you are using health bands, smartphone apps, other life logging services?
- It's likely a fair proportion of you log workouts, steps and other activities daily.
- Some of you may have Nest, Hue or other home smart devices.
- All of these services capture and generate useful data.
- What if we could capture, combine and mine this data for insights, correlations, trends and patterns?
- And what if we used Oracle Big Data Discovery to bring the data together, and mine for those insights?
FOR THE PAST SIX MONTHS, I DID JUST THAT
Oracle Big Data Discovery - What Is It?

- A visual front-end to the Hadoop data reservoir, providing end-user access to datasets
- Data sampled and loaded from Hadoop (Hive) into NoSQL Dgraph engine for fast analysis
- Catalog, profile, analyse and combine schema-on-read datasets across the Hadoop cluster
- Visualize and search datasets to gain insights, potentially load in summary form into DW
Key Features in Oracle Big Data Discovery 1.1.x

VISUALISING AND TRANSFORMING DATA
- Provide a visual catalog and search function across data in the data reservoir
- Profile and understand data, relationships, data quality issues
- Apply simple changes, transformations to data
- Add enrichment to incoming data including sentiment, geo-location

COMMUNICATING AND BUNDLING
- Visualize datasets using rich chart types
- Join datasets at visualisation level
- Add data from JDBC + file sources
- Prepare more structured Hadoop datasets for use with other tools
New Features In Oracle Big Data Discovery 1.2

IMPORTING AND TIDYING DATA
- Aggregation
- Materialised Joins
- Better Pan and Zoom
- Speed and Scale

METADATA AND DEVELOPER PRODUCTIVITY
- Metadata Curation
- Attribute-level Search from Catalog
- Activity Hub
- Python Interface to BDD Datasets

COMMUNICATING AND BUNDLING
- Streamlined UI
- Faster Data Indexing
- Activity Hub
- Sunburst Visualization
BDD Shell - pySpark Command-Line

• Interactive tool designed to work with BDD without using Studio's front-end
• Exposes all BDD concepts (views, datasets, data sources etc)
• Supports Apache Spark
• HiveContext and SQLContext exposed
• BDD Shell SDK for easy access to BDD features, functionality
• Access to third-party libraries such as Pandas, Spark ML, numPy
• Use with web-based notebook such as iPython, Jupyter, Zeppelin
Oracle Big Data Discovery as the Data Scientists’ Toolkit

IMPORTING AND TIDYING DATA

VISUALISING AND TRANSFORMING DATA

MODELING AND INFERRING

COMMUNICATING AND BUNDLING
Using Wearables To Enhance & Improve Workouts

• Over the past year or so, I've getting into cycling and generally trying to keep fit and lose weight
• Also using these activities as data sources for this project
 • Using Wahoo Elemnt + Strava for workout recording
 • Withings Wifi scales for weight + body fat measurement
 • Jawbone UP3 for steps, sleep, resting heart rate
• All the time, collecting data and storing it in Hadoop
Shades
Open the shades and let the morning light in.

Electric Kettle
Start the electric kettle so the water is ready for your tea.

HOME AUTOMATION

Thermostat
Turn up the thermostat before you get out of bed.
Another personal project has been home automation, IoT and the “smart home”

- Started with Nest thermostat and Philips Hue lights
- Extended the Nest system to include Nest Protect and Nest Cam
- Used Apple HomeKit, HomeBridge, Apple TV for Siri voice control
- Added Samsung Smart Things hub for Z-wave, Zigbee compatibility
English man spends 11 hours trying to make cup of tea with Wi-Fi kettle

Data specialist Mark Rittman spent an entire day attempting to set up his new appliance so that it would boil on command.
And The Third Hobby: Land All That Data Into Hadoop

- Data extracted or transported to target platform using LogStash, CSV file batch loads
- Landed into HDFS as JSON documents, then exposed as Hive tables using Storage Handler
- Cataloged, visualised and analysed using Oracle Big Data Discovery + Python ML
Real-Time Logging of IoT + Wearable Activity Data

- Gmail
- Withings Scales
- Strava
- Jawbone UP
- Weather
- Youtube
- iOS Photos
- Twitter
- RescueTime
- Pocket
- Instagram
- Google Calendar
- Facebook

IFTTT Maker Channel
JSON via HTTP POST

(real-time)

Nest Protect (X2), Thermostat, Cam

(real-time)

Apple Homekit, Apple TV, Siri

(real-time)

Homebridge
Homekit / Smartthings Connector

(real-time)

Philips Hue Lighting

(real-time)

Withings Smart Scales

(real-time)

Airplay Speakers

(real-time)

Samsung Smart Things Hub (Z-Wave, Zigbee)

(real-time)

SmartThings

(real-time)

Door, Motion, Moisture, Presence Sensors

(real-time)

LogStash

6 Node CDH5.6 Hadoop Cluster in garage, + Oracle Big Data Discovery 1.2.0 on VMware ESXi 6-node cluster
Landing Wearables Data In Real-Time

- Uses IFTTT cloud workflow service to subscribe to events on wearables’ APIs
- Triggers HTTP GET request via IFTTT Maker Channel to Logstash running at home
- Event data sent as JSON documents, loaded into HDFS via webhdfs protocol
- Structured in Hadoop using Hive JSONSerDe
- Then loaded hourly into DGraph using Big Data Discovery dataprocessing CLI
- Event data automatically enriched, and can be joined to smart home data for analysis
Landing Smart Home Data In Real-Time

- All smart device events and sensor readings are routed through Samsung Smart Things hub
- Including Apple HomeKit devices, through custom integration
- Event data uploads to Smart Things cloud service + storage
- Custom Groovy SmartApp subscribes to device events, transmits JSON documents to Logstash using HTTP GET requests
- Then process flow the same as with wearables and social media / comms data
This combined dataset can potentially be used to answer some interesting questions. For example ... “which of my daily activities or behaviours has most influence on my weight?” Is it amount of exercise? amount of sleep? What I eat? How much work I’m doing in evenings? Objective is to work out which variable has the most influence on % weight change wk/wk. Will require tidying/reformatting of data feeds to standardise dates, bin and transform data. Dealing with nulls where workouts, weight readings were missed on certain days. Aggregating and joining different datasets. Build linear regression model to identify most influential variable.
Perform Exploratory Analysis On Data

- Understand the “spread” of data using histograms
- Use box-plot charts to identify outliers and range of “usual” values
- Sort attributes by strongest correlation to a target attribute
Transform ("Wrangle") Data To Standardise & Tidy

- Initial row-wise preparation and transformation of data using Groovy transformations
Dealing With Missing Recordings In The Data

- Very typical with self-recorded healthcare and workout data
- Most machine-learning algorithms expect every attribute to have a value per row
- Self-recorded data is typically sporadically recorded, lots of gaps in data
- Need to decide what to do with columns of poorly populate values
Joining Wearables Data With Comms + Smart Devices

- Previous versions of BDD allowed you to create joins for views
- Used in visualisations, equivalent to a SQL view i.e. SELECT only
- BDD 1.2.x allows you to add new joined attributes to data view, i.e. materialise
- In this instance, use to bring in data on emails, and on geolocation
Aggregate Data Up To The Week Level

• Only sensible option when looking at change in weight compared to prior period
• Change compared to previous day too granular
Use of BDD Shell, Python Pandas + Jupyter Notebook

- Now we have the data organised into weekly reading rows, we now switch to **Python Pandas**
- Use this Python statistics and data visualisation library to **calculate w/o/w weight change**, and **identify most influential variable** (i.e. action, activity type I’ve recorded)
 - Use BDD Shell to connect to BDD SDK from pySpark environment
 - Work with BDD datasets as Spark dataframes
 - Import and use Python Pandas and SparkML packages
 - Shape and transform dataframes further if needed
 - Use visualizations to understand correlations between variables
 - Create linear regression ML model to identify most influential variable
Use BDD Shell API to Identify Main Dataset ID

```python
import json
print(json.dumps(ds.properties(), indent=2, sort_keys=True))
```
Use Python PANDAS to Calculate % CHG W/w
Identify Correlations Between Attributes
Use Linear Regression on BDD Dataset via Python

• To answer the question - which metric is the most influential when it comes to weight change?
The Answer? ... Hours of Sleep Most Influential Activity

- Most influential variable/attribute in my weight/loss gain is hours of sleep per week
- The more sleep I get, the more likely I am to exercise, walk somewhere, eat properly and lose weight
- Weeks where less sleep recorded led to eating more carbs, driving rather than walking, weight gain
- Environment (internal, external) had less influence this time, but influential variables were:
 - Comms activity - emails sent late night, Facebook likes, Instagram photos - proxy for working/play
 - Heat/Temperature inside house - indicates warm/cold outside, driver of exercise activity
 - Geo-location - am I on holiday? At work that week?
 - Diet? Although fairly constant over perio
How Did Oracle BDD Help With This Project?

- Visual, graphic way to understand shape, data distribution and outliers/completeness
- Simple user-driven graphical tools for data tidying and transformation
- Join and aggregate datasets to get to one row of data = set of weekly readings
- Enrich and bring in additional datasets to add comms and environment activity data
- Enable use of wide range of industry-standard stats and ML libraries on final dataset
PRACTICAL IOT DEVELOPMENT USING ORACLE BIG DATA AND ORACLE DV ...AND A WIFI KETTLE

Mark Rittman, Oracle ACE Director & Independent Analyst
MJR Analytics ltd (http://www.mjr-analytics.com)

BIWA SUMMIT 2017, SAN FRANCISCO